SOD2 protects neurons from injury in cell culture and animal models of diabetic neuropathy.
نویسندگان
چکیده
Hyperglycemia-induced oxidative stress is an inciting event in the development of diabetic complications including diabetic neuropathy. Our observations of significant oxidative stress and morphological abnormalities in mitochondria led us to examine manganese superoxide dismutase (SOD2), the enzyme responsible for mitochondrial detoxification of oxygen radicals. We demonstrate that overexpression of SOD2 decreases superoxide (O(2)(-)) in cultured primary dorsal root ganglion (DRG) neurons and subsequently blocks caspase-3 activation and cellular injury. Underexpression of SOD2 in dissociated DRG cultures from adult SOD2(+/-) mice results in increased levels of O2-, activation of caspase-3 cleavage and decreased neurite outgrowth under basal conditions that are exacerbated by hyperglycemia. These profound changes in sensory neurons led us to explore the effects of decreased SOD2 on the development of diabetic neuropathy (DN) in mice. DN was assessed in SOD2(+/-) C57BL/6J mice and their SOD2(+/+) littermates following streptozotocin (STZ) treatment. These animals, while hyperglycemic, do not display any signs of DN. DN was observed in the C57BL/6Jdb/db mouse, and decreased expression of SOD2 in these animals increased DN. Our data suggest that SOD2 activity is an important cellular modifier of neuronal oxidative defense against hyperglycemic injury.
منابع مشابه
Coenzyme Q10 Protects Hippocampal Neurons against Ischemia/ Reperfusion Injury via Modulation of BAX/Bcl-2 Expression
Introduction: Preliminary studies have con.rmed reduction in cell death following treatment with antioxidants. According to this .nding we study the relationship between consumption of CoQ10 and expression of Bax and Bcl2 in hippocampus following ischemia/reperfusion as proteins involved in cell programmed death or apoptosis. Methods: We studied the protective role of CoQ10 against ischemia-rep...
متن کاملبررسی غلظتهای مختلف گلوکز بر سمیت سلولی و افزایش گونههای فعال اکسیژن و نقش حفاظتی زعفران در سلول PC12
Background and Objective: Diabetic neuropathy is one of the most frequent complications of diabetes. Despite some studies, the exact mechanism of glucose neurotoxicity has not been fully elucidated. Increased reactive oxygen species (ROS) has been proposed as a possible mechanism. Crocus sativus L. (saffron) has been known as a source of antioxidants. Therefore, neuroprotective effect of saffro...
متن کاملAqueous extract of Zizyphus jujuba fruit attenuates glucose induced neurotoxicity in an in vitro model of diabetic neuropathy
Objective(s):The neuroprotective effect offruit aqueous extract of Ziziphus jujuba Lam on glucose-induced neurotoxicity in PC12 cells as an appropriate in vitro model of diabetic neuropathy was investigated. Materials and Methods: Cell viability was determined by the MTT assay. Cellular reactive oxygen species (ROS) generation was measured by DCFH-DA analysis. Cleaved caspase-3, a biochemical p...
متن کاملQuercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122
Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...
متن کاملAllopregnanolone suppresses diabetes-induced neuropathic pain and motor deficit through inhibition of GABAA receptor down-regulation in the spinal cord of diabetic rats
Objective(s):Painful diabetic neuropathy is associated with hyperexcitability and hyperactivity of spinal cord neurons. However, its underlying pathophysiological mechanisms have not been fully clarified. Induction of excitatory/inhibitory neurotransmission imbalance at the spinal cord seems to account for the abnormal neuronal activity in diabetes. Protective properties of neurosteroids have b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental neurology
دوره 208 2 شماره
صفحات -
تاریخ انتشار 2007